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We consider a situation involving a three-dimensional marginal separation, where a 
(steady) boundary-layer flow is on the verge of separating a t  a point (located along 
a line of symmetry/centreline). At this point we include a ‘triple-deck’, thereby 
permitting a small amount of interaction to occur. Unsteadiness is included within 
this interaction region through some external means. It is shown that the problem 
reduces to the solution of a nonlinear, unsteady, partial integro system, which is 
solved numerically by means of time-marching together with a pseudo-spectral 
method spatially. A number of solutions to this system are presented which strongly 
suggest that  a breakdown of this system may occur, a t  a finite spatial position, a t  a 
finite time. The structure and details of this breakdown are then described. 

1. Introduction 
I n  a recent paper, Duck (1989, hereinafter referred to as I), studied the effect of 

allowing a small amount of three-dimensional interaction (based on triple-deck 
theory) a t  a point where a steady laminar boundary layer was on the verge of 
separating. It was found that this interaction zone (i) permitted a small amount of 
reversed flow to occur within the interaction region and (ii) illustrated that non- 
uniqueness of solution was possible. These observations for the three-dimensional 
case were in line with related two-dimensional work published some years previously. 
The original work in this area was that of Stewartson, Smith & Kaups (1982), who 
analysed the (two-dimensional) problem ; this was studied in further detail by Brown 
& Stewartson (1983), who showed that up to four solutions were possible for a 
particular choice of parameters. 

This two-dimensional work was later extended to a three-dimensional situation, 
along a line of symmetry, by Brown (1985), although (as described in I) a number of 
assumptions were made to simplify the computations, rendering the problem 
basically two-dimensional. 

The work of Stewartson et al. (1982) was extended to the unsteady regime by 
Smith (1982), who showed how the interacting flow may break down, with the 
development of a singularity a t  a point, a t  a finite time; this singularity was also 
described analytically (in addition to being observed numerically). Related studies 
of problems of this kind were then made by Ryzhov & Smith (1984), Smith & 
Elliott (1985), and extended to a rather more nonlinear regime by Elliott & Smith 
(1987). These studies all confirmed the possibility of a finite-time breakdown of the 
solution. Further Goldstein, Leib & Cowley (1982) showed how two-dimensional 
Tollmien-Schlichting waves may be generated on marginally separated flow. 
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A number of other two-dimensional studies indicating the possible occurrence of 
a finite-time singularity of a boundary layer in a triple-decklinteracting boundary 
layer include the studies of Smith & Bodonyi (1985), Duck (1985ab, 1987), Tutty & 
Cowley (1986). Recently Brotherton-Radcliffe & Smith (1987) and Smith (1988) have 
presented possible structures of such breakdowns. Further, Duck (1990) has 
presented a number of numerical results indicating the occurrence of a finite-time 
breakdown in a three-dimensional nonlinear unsteady triple-deck flow. 

In  this paper we extend the three-dimensional work of I into the unsteady regime. 
As in I, we concern ourselves with a steady laminar boundary layer, which is on the 
verge of separating a t  a point, situated along a line of symmetry ; in particular we 
assume that both the streamwise wall shear and the crossflow derivative of crossflow 
wall shear (directions defined relative to the free stream) vanish simultaneously a t  
the point in question, but then both immediately recover. This boundary layer could, 
for example, be set up on a body of revolution, similar to that described by Cebeci, 
Khattab & Stewartson (1980) and Cebeci & Su (1988). The work of Cebeci et al. (1980) 
showed, in particular, how a situation could be devised by which the streamwise wall 
shear, along the line of symmetry of the body of revolution, could vanish at a point 
but then immediately recover (indeed, this was the basic flow situation studied by 
Brown 1985); however, unlike the situation studied in this paper, the crossflow 
derivative of the crossflow wall shear did not vanish, although there seems to be no 
fundamental reason why this should not be possible. We go on to  assume that the 
flow is perturbed in some (unsteady) fashion. Physically, this could perhaps be 
realized by some small-amplitude pitching or yawing motion of the body (for 
example), although for this paper the particular details are not important. 

We fully expect (guided by the two-dimensional results of Smith 1982) that the 
unsteady three-dimensional marginal separation problem may suffer finite- time 
breakdowns. The attractive feature of the problem is that  this breakdown is likely 
to be partly analysable, and indeed this turns out to be the case; the author is 
unaware of any previous descriptions of a fully three-dimensional unsteady 
breakdown of an interacting boundary-layer problem. 

The structure of the problem and the numerical techniques employed are broadly 
based on I, although the additional dimension of time adds significantly to the 
computational complexity of the problem. 

This particular problem is likely of practical importance, being linked to the 
problem of dynamic stall on an aerofoil or on a body of revolution (for example), 
involving an abrupt change in the characteristics of the flow a t  some finite angle of 
incidence (for example). 

In  the following section we go on to formulate the problem in detail. 

2. Formulation 
Details here are similar in many respects to I, and consequently discussion in this 

study of such details will be kept to a minimum. 
We consider an incompressible fluid of kinematic viscosity v. We take L to denote 

a typical lengthscale and U ,  a typical free-stream velocity directed along the line of 
symmetry of the configuration. Cartesian coordinates L(x ,  y, z )  are chosen, with 
origin a t  the separation point; the velocity is then written as Urn(., v, w), and the 
pressure is pa V,p, prn being the fluid density. The line of symmetry corresponds to 
z = 0, and the body surface (assuming insignificant curvature) is taken to lie along 
y = 0. 
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The Reynolds number is defined as 

R = U ,  Llv,  

and this is taken to be large throughout this paper. 

second non-dimensional parameter, namely 
If a (typical) timescale of any unsteadiness is taken to be T ,  then we can define a 

So = LITU,, (2 .2 )  

v * u = o ,  (2 .3 )  

and the non-dimensional equations governing the flow may be written as 

au 
S , - + ( U  at * V ) u = - V p + R - ' V 2 u .  (2 .4 )  

Symmetry of the flow about z = 0 implies that u, v, p are even functions about this 
plane, whilst w must be an odd function of z .  Throughout, on y = 0 we impose the 
zero velocity condition u = 0. 

The details of the non-interaction zone are precisely the same as in I. If we define 
(standard) boundary-layer variables Y and V as follows : 

y = R-ty, 2, = R-fV, 

then using the results found in I, as x2 + z2 + 0 ,  for Y = O( 1) 

u = Uo( Y) + p r q  ( Y )  - x[wl( Y )  + K( Y ) ]  - ix2[ c( Y )  + w2( Y ) ]  

+ &."r2ui( Y )  + z2uZ3( Y) - pxr[ V;( Y) + w;( Y ) ]  + . . . , (2 .6a )  

A2X 

r 
V = V, ( Y )  + p - Uo( Y )  + xV,( Y )  -p2h2xUo( Y )  -pr[w,( Y )  - V i (  Y ) ]  

2 0  = zw,(Y)+zxw,(Y)+pzrw;(Y)+ ..., 

p = Po+P,x+~p2x2+~p3z2+. . . . 
Here we have written 

and we must have that 
r = (h2x2 + z2$, 

UO(O) = q ( 0 )  = K(0) = C(0) 
= W,(O) = Wi(0) = V;(O) 

= w,(O) = KJO) = 0, 

uz3(0) = -&2U;l(O). 
I %(O)  = p*h2U;(O), 

... 

Further details are given in I ;  p and h may be regarded as parameters to the 
problem. The key outcome of the above equations is the existence of a discontinuity 
of derivatives of the solution as x2 + z2 + 0. In order to alleviate this, we introduce a 
small interactive zone, wherein 

x = x / s ,  2 = z / s  (2 .11)  

8 = R-4. (2.12) 

are the important streamwise and crossflow coordinates respectively, where 
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At this stage we must be specific about the magnitude of the unsteadiness 
parameter So. If unsteadiness is to play an important role in the problem (i.e. a time 
derivative is present in the key equation (2.31), derived below), we must have that 

so = 823, s = 0(1), (2.13) 

representing a relatively long timescale. A similar scaling was found by Smith (1982) 
to be important. 

For Y = 0(1), the solution in the interaction zone is expected to  develop as 

u = Uo(Y)  + S{ -X[w,(Y)  + V;(Y) ]  + A ( X ,  2, t )  Uh(Y))  

+a2( -p?[ v;( Y )  + w2( Y ) ]  +$[A(X,  2, t ) 2 +  y ( 2 ,  t ) ]  u;;( Y )  

+ Z2u2,( Y )  - X A ( X ,  2, t )  [ v;(Y) + w;( Y ) ] )  + . . . , (2.14) 

Ti= ~ ( Y ) - A , U o ( Y ) + S { X ~ ( Y ) - A A , q ( Y )  

+ (XA1, [ V ; ( y )  + w,(Y)I - @A),  w,fY))I+ . . ., (2.15) 
w = G[Zw,(Y)]+S2{XZw,(Y)+ZA(X,Z,t)w;(P)}+ ..., (2.16) 

P = Po + ~ P , X + ~ S 2 P 2 X 2 + ~ S 2 P 3 2 2 + ~ F ( X ,  2, t )  + . . . . (2.17) 

The central feature here is the inclusion of the arbitrary function y(Z , t ) ,  which 
replaces the arbitrary function of Z (only) found in I .  In  order that a proper match 
is made with the non-interacting zone, we must have that 

A ( x , z , ~ )  - , U ( A ~ X ~ + Z ~ ) ;  as X ~ + Z Z +  co. (2.18) 

The solution (2.14) does not satisfy the no-slip condition on Y = 0, and so it is 
necessary to include a further (viscous) layer ('lower deck'). This is described by the 
layer wherein 

(2.19) 
(see I ,  for example). 

The solution then develops in a manner similar to (2.14)-(2.17) except (if Y is 
replaced by dP, and (ii) there is a correction to the u-expansion of S 2 0 ( X ,  b, 2, t ) ,  to 
the V-expansion of 8 8 ( X ,  P, 2, t ) ,  and to the w-expansion of S"(X, b, 2, t ) .  

P = YRf = O(1) 

The governing equations for these correction terms are then 

a0 aV a@ -+-+- = 0, ax ay az 

Sa,Y-+$z2Y2-+a2YU= --+-, - i3A - a0 - -  aP a 2 0  

at ax ax ayz 

(2.20) 

(2.21) 

(2.22) 

where u2 = Ui(0). (2.23) 

The boundary conditions to be applied to this system are 

0,@+0 as P-too, 
W ( P  = 0) = V(P = 0) = 0, 

(2.24) 

(2.25) 
and 0(P = 0) = - ~ 2 { A 2 + y - ~ 2 ( h 2 X 2 + 2 2 ) ) .  (2.26) 

This system is similar to that found in I, but with the inclusion of the time- 
derivative term in (2.21). We now seek to determine the condition to be satisfied by 
A ( X ,  2, t )  if the above system ((2.20)-(2.26)) has a solution. 
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Differentiating (2.21) with respect to X ,  (2.22) with respect to 2 and adding yields 

- a2A 
YS-. (2.27) ax at 

Invoking continuity, namely (2.20), and differentiating (2.27) with respect to P 
yields 

This equation must be solved subject to 

B+o as P+co, 
whilst on P = 0 v =  0, 

(2.28) 

(2.29) 

1 (2.30) 

Using the analyses of Stewartson (1970), Smith (1982) and I, we have that a 
solution to this system is only possible if the following condition is satisfied: 

&,[A*+y(Z, t )  --$(A2X2+22)] 

ai2;(4!) ( ~ - 5 ) ;  

The system is closed by recourse to the upper deck, where Y = O ( 6 : )  and this 
yields (Smith, Sykes & Brighton 1977; Duck & Burggraf 1986) 

(2.32) 

The combined system of (2.31) together with (2.32) represents a closed problem 
(for prescribed y(2 ,  t ) ) .  We discuss the numerical solution to this problem next. 

3. Numerical method 
Following I, we choose to use a (double) Fourier transform method to solve the 

system (2.31) and (2.32). If we define the quantity (for example) 

A**(k, I ,  t )  = A(X,  2, t )  e-ikX-ilZ dXd2, (3.1) 
- W  

then in (k,Z)-space, (2.31) and (2.32) may be easily combined to yield (after 
normalization to remove positive constants) 

[A2 + y ( 2 ,  t )  - (A2X2 + Z2)]** = - (ik); ( k2 + Z2)iA ** - (ik)-f &"A:*. (3.2) 

The numerical technique used in I was based on assuming that the right-hand side 
of (3.2) (without, of course the time-derivative term) was known a t  each iteration 
level, and then an appropriate method was used to solve for the left-hand-side terms. 
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Here, we anticipate using a time-marching scheme to handle time variations ; 
however, such a scheme is likely to require the time-derivative term to be included 
on the left-hand side of (3.2), otherwise numerical instabilities are very likely to 
occur. Consequently, we choose to transfer the time-derivative term on to the left- 
hand side of (3.2), and, in effect, to  express this term in physical (X,Z)-space, 
yielding 

Further, just as in I, since A(X, 2, t )  is unbounded as X2 + 2‘ --f 00, this function is 
inappropriate for numerical calculation (in particular for a Fourier transform 
method) in its present form. We follow I, and write A ( X ,  2, t )  in the following form : 

(3.5) p = (h2X2 + 2 2  +a;,;, where 

and a, is a numerical constant which we have (artificially) introduced into the 
problem, to ensure boundedness as X 2  +Z2 + 0 (indeed, in the limit of zero truncation 
error, the solution for A ( X ,  2, t )  must be independent of a,,). 

We treat B(X,  2, t )  in (3.4) as our unknown, described by the equation 

+ 2A,B+B2+- r($) ’ ~ ( A a t + B t ) d ~ } * * =  (X-fJf -(ik):(k’+Z’);(A,+B)**. (3.7) 

A (fully implicit) Crank-Nicolson scheme was applied to (3.7) with the initial 
conditions (at t = 0) prescribed by the corresponding steady solution for y (2 ,  t = 0 ) ,  
using the computer code developed for I. 

We restricted attention to forcing functions of the form 

Y ( Z ,  t )  = rl(z) Y2(tL (3.8) 
which enabled the various ‘invariant ’ functions (e.g. A,)  to  be (in effect) evaluated 
just once, prior to the unsteady computation commencing. 

One additional feature here, not present in I, is the inclusion of the time-derivative 
term. At each time step (at the ith X-location) we make the following approximation : 

+ ( AX)f{+$$(Xt, 2, t - $At) -#,(Xi + AX, 2, t - $At) + $&(Xi - AX, 2, t - +At)),  (3.9) 

where AX is the grid size in the X-direction (and A 2  the grid size in the Z-direction), 
and At the time step. The Crank-Nicolson differencing scheme made the following 
approximation 

B(Xi ,  2, t )  -B(Xi, 2, t -  At)  
At 

B t ( X i , Z , t - + A t )  z , (3.10) 
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whilst the integral term in (3.19) was evaluated using a standard trapezoidal scheme 
(coupled with (3.10)). 

The term involving B on the right-hand side of (3.7) was evaluated using the fast 
Fourier transform technique of Cooley & Tukey (1965), in which the function is 
actually evaluated in spectral (k, &space, and then transformed back into physical 
( X ,  2)-space ; this same technique was employed in I, and results in considerable 
savings on computational times. 

At each time and iteration level, a t  each Z-location the (algebraic) approximation 
to (3.7) can be written symbolically as 

/B2+EB = R, (3.11) 

where / is the unit matrix and B = B(Xi(i = l ,N) ,Z,  t). We then write 

B = B("-')+6B, (3.12) 

where BCn) denotes the value at the nth iteration level; here we discard O(lt?B12) 
terms, to yield the system 

(2/B'")+ E)6B = R-/B(n)z-€B("). (3.13) 

Thus to obtain a new estimate for the B(n) a linear algebraic system was solved. (In 
I,  just a scalar system was solved; the off-diagonal terms in (3.13) arise directly from 
the time-derivative term.) This scheme is loosely based on Newton's method. The 
solution was then determined at all Z-stations, and the overall procedure then 
repeated until convergence was attained, whereupon the calculation proceeded to the 
following time step. 

4. Numerical solutions 
I n  this section we present numerical solutions for two choices of y(2 ,  t )  (and, as i t  

turns out these exhibit quite different features). The first example taken was with 
h = S =  1 and 

and hence we have 
y(Z,  t )  = e-zz( -2+4  tanh2t) for t 2 0, (4.1) 

yl(z) = e-", (4.2) 

y2(t) = -2+4tanh2t,  t 2 0. (4.3) 

In  this example (and in the following example) conditions at t = 0 were obtained 
by solving the steady problem (considered in I) with y(Z,O).  Further, since Y2(t) 
varies (monotonically) from -2 at t = 0 to + 2  as t+ cc,, then according to  I, the 
corresponding steady problem with (4.2) lies entirely within the envelope of steady 
solutions found in I. 

Figure 1 shows the temporal variation of A ( X ,  2, t )  a t  selected X- and Z-stations, 
and these confirm an evolution from the initial steady state yl(t  = 0) = -2 to the 
final yl(t 9 1) = + 2  state (and figure 1 shows results agreeing with the corresponding 
steady 'upper branch' solution in this limit). Interestingly, a common trend 
observed a t  the locations considered in figure 1 is that, although y(2 , t )  reduces 
monotonically with time (as would quasi-steady results for A ( X ,  Z ) ,  based on the 
results of I), there is seen to be a very slight 'trough ' in the results soon after the 
computation commences, followed by a very pronounced peak soon after t = 1, 
followed by a monotonic decrease towards the t 9 1 values. This particular 
computation was carried out using a grid which extended from X (and 2) x - 10.32 

4 FLM 220 
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FIGURE 2. Spatial variation of A ( X ,  2, t = 3) ; S = 1, A = 1, y (2 ,  t )  = e-za( - 2 + 8 tanh2 t )  

to X (and Z) x 9.68 with AX = AZ x 0.64, At = 0.005 and a. = 1 ; we shall refer to 
this as grid I. 

The second (and what turns out to be the more challenging and interesting) 
example taken was h = S = 1 with 

y (2 ,  t )  = e-z2( - 2 + 8 tanh2 t ) ,  t 2 0, (4.4) 

yz(t) = - 2 + 8  tanh2t, t 2 0. (4.5) 

and hence yl(Z) is given by (4.2), whilst 

Thus we see that y2(t) extends from - 2  at t = 0 (as in the previous example) to +6 
as t+ co. However, this latter value lies outside of the envelope of steady solutions 
found in I corresponding to our choice of yl(Z). 
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L \ Z =  0.3175 -2 “\lt ‘ z = o  
- 3  1 

FIGURE 3. Spatial variation of A ( X , Z , t  = 3.365); S = 1 ,  A = 1, y(Z, t )  = e-Z2(-2+8tanhzt). 

FIGURE 4. Spatial variation of A ( X , Z , t  = 3.665); S = 1, A = I ,  y (2 , t )  = e-ZB(-2+8tanh2t). 

The distribution of A ( X ,  2)  a t  fixed X- or 2-stations and fixed t are shown in figures 
2-5. These particular computations were performed on a grid that extended from 
X (and 2)  x - 10.15 to X (and 2) x 9.84, with AX = A 2  x 0.32, At = 0.005 and 
01, = 1 ; we refer to this as grid 11. 

It is quite clear that a singularity is forming, close to X = 2 = 0, at a finite time, 
with A ( X ,  2, t )  becoming progressively larger and more negative a t  this location. 

4-2 
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A(X = 

FIGURE 5. 

3 t 

A ( X =  2 

I 
.... 6 -  ,..' 

I I 
I 1 -  

6 7 2  

- 6 -  

Spatial variation of A ( X  = 0,  Z ,  t )  ; s = 1, A = 1, y ( z ,  t )  = e-z2( - 2 + 8 tanh't). 

FIGURE 6. Temporal variation of A ( X  = 2 = 0, t )  ; S = 1, h = 1, y (2 ,  t )  = e-22( - 2  + 8 tanh' t )  : 
-__ , grid I; -, grid 11; -.-.- , grid 111; ......, grid IV. 

Figure 6 shows the temporal variation of A(X = Z = 0) on a variety of grids, to 
enable a (partial) assessment to be made of the accuracy of the scheme in this critical 
region. The solid line denotes the grid I1 results. The broken line represents the grid 
I results (a computation was also carried out on this grid, but with uo = 3 ;  these 
results proved to be indistinguishable on the scale used in figure 6). The dot-dashed 
line denotes results from a third grid, referred to as grid 111, with X and Z extending 
from (approximately) -5.16 to +4.84 with AX = A 2  x 0.32, At = 0.005 and uo = 1. 
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Re {A**([  = 0 

t = 3  

FIGURE 7. Distribution of Re{A**(k,E = 0 , t ) )  with k ;  S = 1, h = 1 ,  y (2 , t )  = e-Z4(-2++ttanh2t). 

Grid IV results are shown as a dotted line, a grid which is identical to grid I, except 
that At = 0.05. All these results confirm the likely appearance of a finite-time 
singularity close to X = 2 = 0;  the accuracy of the computations is also confirmed. 

Figure 7 shows the (spectral) distribution of Re{A**(k,l = 0 , t ) )  with k at  selected 
times (computed on grid 11). It appears that this distribution (and indeed other 
spectral distributions, not shown here) undergoes a rapid change in behaviour as the 
apparent breakdown is approached. In particular the decay of the solution as 
Ikl $ 1 is seen to diminish (and this in turn mirrors the finite-time, finite-location 
breakdown in physical X, 2-space). 

In the following section we go on to analyse the structure of this likely singularity. 

5 .  The breakdown 
We now seek to determine the nature of the breakdown suggested in a number of 

the numerical results described in the previous section. In particular, we seek an 
asymptotic solution which predicts IAl+ co at  a finite value ofX ( X ,  say), and a finite 
value of Z (2, say) (notice that the indications from the results for the configuration 
in the previous section that resulted in a breakdown are that 2, x 0), at a finite line 
(t,  say). We define the (small) timescale 

then inspection of (3.7) suggests that if the (i) nonlinear, (ii) time-derivative and (iii) 
the right-hand-side terms all balance, then the following ('hatted') variables are the 

(5 .2)  

most appropriate : 

7 = t , - t ;  (5.1) 

I x-x , - - 79s - I -  ", 
2-2, = 7!s-o&, 

A = T-:s:A(z, 8)  +o(7-$). 
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solution entirely in physical (2, @-space yields the following system : 
Substitution of these forms into (3.3), taking the largest terms in r ,  and writing the 

(5.4) where 

and K ( x )  denotes the complete elliptic integral of the first kind, argument x. 
In order to match correctly on to the X = O( l), Z = O( 1)  problem, we require that 

A - a ( Z / Z )  (h,Z2 +&-a as Z2+Z2+ co, (5.5) 

where A, is a constant and a ( z / & )  is a function of z/&. Both quantities must be 
determined from the terminal behaviour of (3.2). (The scalings (5.2) are entirely 
consistent with the two-dimensional work of Smith 1982.) 

Indeed, it is possible to obtain a result identical to (5.5) using a linearized form of 
(3.2). This may be justified by supposing that the parameter S 9 1, i.e. we are 
concerned with rapid temporal variations in external forcing. We also suppose that 
the typical X -  and 2-lengthscales are both O(S-%). The resulting system is then 
(having scaled out S )  

The solution to this is 
A:*+(P+P)~(~E)%A** = 0. (5.6) 

(5.7) A** = ~ : * ( k ,  I) e(k2+z2)f(ik):(t-ts). 

From this we see that as t + t,, the solution approaches a finite-time breakdown, with 
the appropriate X -  and Z-scales being O ( ( t , - t ) i ) ,  in both cases, in complete accord 
with (5.2). 

Let us now return to consider the system (5.3) ; this, in general, requires a fully 
numerical (and quite substantial) task. However, we can make some further analytic 
progress (that suggests the existence of regular solutions to (5 .3)  for all 3 and g), by 
using the idea, put forward by Smith (1982), of assuming IA”I < 1 for all 2 and 2 (this 
amounts to assuming la(z/Z)l 4 1). With this restriction the ,& term on the left- 
hand side of (5.3) may be discarded. If the resulting system is subject to a double 
Fourier transform, then (after normalizing to remove positive constants, and then 
using tilde variables) 

This may be solved using a technique based on the method of characteristics; 
defining variables fl, = ( ~ z + A ~ 1 ” 2 ) ~ ,  t2 = &/f, (5.8) may then be written in the form 

This can be integrated routinely to give the following general solution: 
- 

x**(&,ij = F * * ( i )  (&2+~~1”2)-aexp{--(i&)f(&2+~2)1}. (5.10) 
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Here F**(&/f)  is an arbitrary function of (E/1").  The solution (5.10) is entirely 
consistent with (5.5) (seen by allowing l2 + I"" + 0). The importance of (5.10) is that it 
illustrates that a regular solution exists to (the linearized form of) (5.3) for all 3 and 
g ,  and as such strongly suggests that the terminal description of the breakdown is 
given by the solution of (5.3). 

6. General discussion 
In this paper (i) we have presented the structure of the flow in the vicinity of a 

three-dimensional marginal separation point (situated along a line of symmetry), 
including the effects of unsteadiness a t  this point ; (ii) the solution of the nonlinear, 
unsteady integro-differential system has been carried out in two distinct cases, the 
first where the flow evolves regularly from one steady state to another steady state, 
and the second where a three-dimensional breakdown is seen to be observed ; (iii) the 
structure of this breakdown has also been described. 

Although, from the point of view of this paper, the particular details of the 
mechanism by which unsteadiness is injected into the problem are not important, we 
could perhaps envisage that this may be achieved (for example) by a pitching/ 
buffeting of an aerofoil or an aerodynamic body. 

Qualitative comparison between the numerical results of $4, and the analysis of $5 
shows quite good agreement, although the computations do become very much more 
difficult as the breakdown is approached (see the remarks of Smith 1982). Certainly 
the numerical results point to the emergence of a small region (close to X = 2 = 0) 
inside which A ( X ,  2, t )  increases rapidly, both spatially and temporally. 

The implications of this breakdown are that, as y(2,  t )  increases above its critical 
value, although the flow initially responds slowly (on a timescale O(&)), the flow 
then develops suddenly/explosively as the breakdown time is approached. 

A further matter concerns the ultimate behaviour of the flow, leading from the 
breakdown detailed in $5.  It is surmized by Smith (1982) that (in the two- 
dimensional context) the breakdown leads ultimately to the flow being governed by 
a form of the unsteady boundary-layer equations. Here, in the three-dimensional 
situation, such a scenario seems not unreasonable. This aspect is currently under 
investigation. 

Finally, a very useful numerical exercise would be to determine conditions under 
which a boundary layer (on a body of revolution, for example) could simultaneously 
have a vanishing streamwise wall shear and crossflow derivative of crossflow wall 
shear, along a line of symmetry as envisaged for the basic flow throughout this study. 

Much of this work has carried out whilst the author was visiting NASA Lewis 
Research Center (under the ICOMP Program). A number of computations were 
carried out at  Manchester Computer Centre with Computer time provided under 
SERC Grant no. GR/E/25702, and by the University of Manchester. 
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